Article

Water color from Sentinel-2 MSI data for monitoring large rivers: Yangtze and Danube

Details

Citation

Wang S, Jiang X, Spyrakos E, Li J, McGlinchey C, Constantinescu AM & Tyler AN (2023) Water color from Sentinel-2 MSI data for monitoring large rivers: Yangtze and Danube. Geo-spatial Information Science, pp. 1-16. https://doi.org/10.1080/10095020.2023.2258950

Abstract
Rivers provide key ecosystem services that are inherently engineered and optimized to meet the strategic and economic needs of countries around the world. However, limited water quality records of a full river continuum hindered the understanding of how river systems response to the multiple stressors acting on them. This study highlights the use of Sentinel-2 Multi-Spectral Imager (MSI) data to monitor changes in water color in two optically complex river systems: the Yangtze and Danube using the Forel-Ule Index (FUI). FUI divides water color into 21 classes from dark blue to yellowish brown stemming from the historical Forel-Ule water color scale and has been promoted as a useful indicator showing water turbidity variations in water bodies. The results revealed contrasting water color patterns in the two rivers on both spatial and seasonal scales. Spatially, the FUI of the Yangtze River gradually increased from the upper reaches to the lower reaches, while the FUI of the Danube River declined in the lower reaches, which is possibly due to the sediment sink effect of the Iron Gate Dams. The regional FUI peaks and valleys observed in the two river systems have also been shown to be related to the dams and hydropower stations along them. Seasonally, the variations of FUI in both systems can be attributed to climate seasonality, especially precipitation in the basin and the water level. Moreover, land cover within the river basin was possibly a significant determinant of water color, as higher levels of vegetation in the Danube basin were associated with lower FUI values, whereas higher FUI values and lower levels of vegetation were observed in the Yangtze system. This study furthers our knowledge of using Sentinel-2 MSI to monitor and understand the spatial-temporal variations of river systems and highlights the capabilities of the FUI in an optically complex environment.

Keywords
Forel-Ule Index (FUI); Water color; Water quality; Rivers; Sentinel-2; MSI; Yangtze; Danube

Journal
Geo-spatial Information Science

StatusPublished
FundersEuropean Space Agency and Innovate UK
Publication date26/09/2023
Publication date online26/09/2023
Date accepted by journal10/09/2023
URLhttp://hdl.handle.net/1893/35501
PublisherInforma UK Limited
ISSN1009-5020
eISSN1993-5153

People (3)

Mr Conor McGlinchey

Mr Conor McGlinchey

PhD Researcher, Biological and Environmental Sciences

Professor Evangelos Spyrakos

Professor Evangelos Spyrakos

Professor, Biological and Environmental Sciences

Professor Andrew Tyler

Professor Andrew Tyler

Scotland Hydro Nation Chair, Biological and Environmental Sciences

Projects (1)

ESA_CCI_ESpyrakos Baseline
PI:

Files (1)