Article
Details
Citation
Fitzer SC, McGill RAR, Torres Gabarda S, Hughes B, Dove M, O'Connor W & Byrne M (2019) Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Global Change Biology, 25 (12), pp. 4105-4115. https://doi.org/10.1111/gcb.14818
Abstract
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification.
Keywords
aquaculture; calcification; carbon pathway; climate change; estuary; low pH; Saccostrea glomerata; selectively bred families; Sydney rock oyster
Journal
Global Change Biology: Volume 25, Issue 12
Status | Published |
---|---|
Funders | Natural Environment Research Council, Australian Research Council and NERC Natural Environment Research Council |
Publication date | 31/12/2019 |
Publication date online | 25/09/2019 |
Date accepted by journal | 20/08/2019 |
URL | http://hdl.handle.net/1893/30193 |
Publisher | Wiley |
ISSN | 1354-1013 |
eISSN | 1365-2486 |
People (1)
Lecturer, Institute of Aquaculture