Article

Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein

Details

Citation

Mosbahi K, Wojnowska M, Albalat A & Walker D (2018) Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein. Proceedings of the National Academy of Sciences, 115 (26), pp. 6840-6845. https://doi.org/10.1073/pnas.1800672115

Abstract
Iron is an essential micronutrient for most bacteria and is obtained from iron-chelating siderophores or directly from iron-containing host proteins. For Gram-negative bacteria, classical iron transport systems consist of an outer membrane receptor, a periplasmic binding protein, and an inner membrane ABC transporter, which work in concert to deliver iron from the cell surface to the cytoplasm. We recently showed that Pectobacterium spp. are able to acquire iron from ferredoxin, a small and stable 2Fe-2S iron sulfur cluster containing protein and identified the ferredoxin receptor, FusA, a TonBdependent receptor that binds ferredoxin on the cell surface. The genetic context of fusA suggests an atypical iron acquisition system, lacking a periplasmic binding protein, although the mechanism through which iron is extracted from the captured ferredoxin has remained unknown. Here we show that FusC, an M16 family protease, displays a highly targeted proteolytic activity against plant ferredoxin, and that growth enhancement of Pectobacterium due to iron acquisition from ferredoxin is FusC-dependent. The periplasmic location of FusC indicates a mechanism in which ferredoxin is imported into the periplasm via FusA before cleavage by FusC, as confirmed by the uptake and accumulation of ferredoxin in the periplasm in a strain lacking fusC. The existence of homologous uptake systems in a range of pathogenic bacteria suggests that protein uptake for nutrient acquisition may be widespread in bacteria and shows that, similar to their endosymbiotic descendants mitochondria and chloroplasts, bacteria produce dedicated protein import systems.

Keywords
iron; ferredoxin; M16 protease; protein translocation; outer membrane

Journal
Proceedings of the National Academy of Sciences: Volume 115, Issue 26

StatusPublished
FundersBiotechnology and Biological Sciences Research Council
Publication date26/06/2018
Publication date online11/06/2018
Date accepted by journal15/05/2018
URLhttp://hdl.handle.net/1893/27368
PublisherProceedings of the National Academy of Sciences
ISSN0027-8424
eISSN1091-6490

People (1)

Professor Amaya Albalat

Professor Amaya Albalat

Professor, Institute of Aquaculture

Files (1)