Article

Deleting Edges to Restrict the Size of an Epidemic: A New Application for Treewidth

Details

Citation

Enright J & Meeks K (2018) Deleting Edges to Restrict the Size of an Epidemic: A New Application for Treewidth. Algorithmica, 80 (6), pp. 1857-1889. https://doi.org/10.1007/s00453-017-0311-7

Abstract
Motivated by applications in network epidemiology, we consider the problem of determining whether it is possible to delete at most k edges from a given input graph (of small treewidth) so that the resulting graph avoids a set F of forbidden subgraphs; of particular interest is the problem of determining whether it is possible to delete at most k edges so that the resulting graph has no connected component of more than h vertices, as this bounds the worst-case size of an epidemic. While even this special case of the problem is NP-complete in general (even when h=3), we provide evidence that many of the real-world networks of interest are likely to have small treewidth, and we describe an algorithm which solves the general problem in time 2O(|F|wr)n on an input graph having n vertices and whose treewidth is bounded by a fixed constantw, if each of the subgraphs we wish to avoid has at most r vertices. For the special case in which we wish only to ensure that no component has more than h vertices, we improve on this to give an algorithm running in time O((wh)2wn), which we have implemented and tested on real datasets based on cattle movements.

Keywords
Edge-deletion; Treewidth; Network epidemiology; Graph contagion

Journal
Algorithmica: Volume 80, Issue 6

StatusPublished
Publication date30/06/2018
Publication date online20/04/2017
Date accepted by journal11/04/2017
URLhttp://hdl.handle.net/1893/25354
PublisherSpringer
ISSN0178-4617
eISSN1432-0541

Files (1)