Conference Paper (published)
Details
Citation
Wu Y, McCall J, Godley PM, Brownlee A & Cairns D (2008) Bio-control in Mushroom Farming Using a Markov Network EDA. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on Evolutionary Computation 2008, CEC 2008, (IEEE World Congress on Computational Intelligence), Hong Kong, 01.06.2008-06.06.2008. Hoboken, NJ: Institute of Electrical and Electronics Engineers (IEEE), pp. 2991-2996. https://doi.org/10.1109/CEC.2008.4631201
Abstract
In this paper we present an application of an Estimation of Distribution Algorithm (EDA) that uses a Markov network probabilistic model. The application is to the problem of bio-control in mushroom farming, a domain which admits bang-bang-control solutions. The problem is multi- objective and uses a weighted fitness function. Previous work on this problem has applied genetic algorithms (GA) with directed intervention crossover schemes aimed at effective biocontrol at an efficient level of intervention. Here we compare these approaches with the EDA Distribution Estimation Using Markov networks (DEUMd). DEUMd constructs a probabilistic model using Markov networks. Our experiments compare the quality of solutions produced by DEUMd with the GA approaches and also reveal interesting differences in the search dynamics that have implications for algorithm design.
Keywords
Optimisation; Evolutionary Algorithms; EDA
Status | Published |
---|---|
Publication date | 31/12/2008 |
URL | http://hdl.handle.net/1893/2445 |
Related URLs | http://www.ieee.org/…ml?Conf_ID=13288 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Place of publication | Hoboken, NJ |
ISBN | 978-1-4244-1822-0 |
Conference | IEEE Congress on Evolutionary Computation 2008, CEC 2008, (IEEE World Congress on Computational Intelligence) |
Conference location | Hong Kong |
Dates | – |
People (2)
Senior Lecturer in Computing Science, Computing Science and Mathematics - Division
Lecturer, Computing Science