Article

Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse

Details

Citation

Laurenson MK, Norman R, Gilbert L, Reid HW & Hudson PJ (2003) Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse. Journal of Animal Ecology, 72 (1), pp. 177-185. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2656.2003.00688.x/abstract?systemMessage=Wiley+Online+Library+will+be+disrupted+on+9+June+from+10%3A00-12%3A00+BST+%2805%3A00-07%3A00+EDT%29+for+essential+maintenance; https://doi.org/10.1046/j.1365-2656.2003.00688.x

Abstract
1. We examined the role of mountain hares in the louping-ill virus/Ixodes ricinus tick system to determine whether hares were reservoirs of these pathogens for red grouse. A field experiment, which involved reducing mountain hare densities was undertaken and changes in tick abundance, louping-ill virus seroprevalence and red grouse densities recorded. 2. Hares were found to be important hosts for all stages of ticks at two study sites and, where sheep were frequently treated with acaricide, hares fed the greatest proportion of adult ticks. Hare densities were reduced at the experimental site between 1993 and 2001 but remained relatively constant at a control site. Both nymph and larvae tick burdens on red grouse chicks declined over this period to very low levels at the treatment site, but not at the control site. The estimated size of the tick population at the treatment site decreased by more than 99% by 1999. 3. Louping-ill prevalence, as measured by antibody prevalence in shot young red grouse, also declined at the treatment site, lagging behind the tick decline by approximately 2 years. The number of young grouse produced per hen grouse at this treatment site increased in comparison to a second control area. However, no change was found in summer grouse densities and thus we cannot demonstrate parasite-mediated competition. 4. A deterministic SIR-type model describing the dynamics of this pathogen/vector/host system was constructed and used to examine the role of mountain hares in louping-ill virus and tick dynamics. The model predicted a decline in tick numbers and seroprevalence as hare densities reduced. The inclusion of hares as both tick hosts and vector-host-vector transmitters of louping-ill virus gave the best fit to the observed data.

Keywords
disease reservoir; Ixodes ricinus; louping-ill virus; mountain hare; red grouse; tick

Journal
Journal of Animal Ecology: Volume 72, Issue 1

StatusPublished
Publication date31/01/2003
Publication date online10/02/2003
URLhttp://hdl.handle.net/1893/7710
PublisherJohn Wiley & Sons
Publisher URLhttp://onlinelibrary.wiley.com/…tial+maintenance
ISSN0021-8790
eISSN1365-2656

People (1)

Professor Rachel Norman

Professor Rachel Norman

Chair in Food Security & Sustainability, Mathematics

Research centres/groups