Article

Non-linear predictability in stock and bond returns: When and where is it exploitable?

Details

Citation

Guidolin M, Hyde S, McMillan D & Ono S (2009) Non-linear predictability in stock and bond returns: When and where is it exploitable?. International Journal of Forecasting, 25 (2), pp. 373-399. https://doi.org/10.1016/j.ijforecast.2009.01.002

Abstract
We systematically examine the comparative predictive performance of a number of linear and non-linear models for stock and bond returns in the G7 countries. Besides Markov switching, threshold autoregressive (TAR), and smooth transition autoregressive (STAR) regime switching models, we also estimate univariate models in which conditional heteroskedasticity is captured by GARCH and in which predicted volatilities appear in the conditional mean function. We find that capturing nonlinear effects may be key to improving forecasting. In contrast to other G7 countries, US and UK asset return data are "special," requiring that non-linear dynamics be modeled, especially when using a Markov switching framework. The results appear to be remarkably stable over time, robust to changes in the loss function used in statistical evaluations as well as to the methodology employed to perform pair-wise comparisons.

Keywords
Non-linearities; Regime switching; Threshold predictive regressions; Forecasting

Journal
International Journal of Forecasting: Volume 25, Issue 2

StatusPublished
Publication date30/04/2009
URLhttp://hdl.handle.net/1893/11780
PublisherElsevier for the International Institute of Forecasters
ISSN0169-2070

People (1)

Professor David McMillan

Professor David McMillan

Professor in Finance, Accounting & Finance