Article

Probabilistic synaptic transmission in the associative net

Details

Citation

Graham B & Willshaw DJ (1999) Probabilistic synaptic transmission in the associative net. Neural Computation, 11 (1), pp. 117-137. https://doi.org/10.1162/089976699300016845

Abstract
The associative net model of heteroassociative memory with binary-valued synapses has been extended to include recent experimental data indicating that in the hippocampus, one form of synaptic modification is a change in the probability of synaptic transmission. Pattern pairs are stored in the net by a version of the Hebbian learning rule that changes the probability of transmission at synapses where the presynaptic and post-synaptic units are simultaneously active from a low, base value to a high, modified value. Numerical calculations of the expected recall response of this stochastic associative net have been used to assess the performance for different values of the base and modified probabilities. If there is a cost incurred with generating the difference between these probabilities, then a difference of about 0.4 is optimal. This corresponds to the magnitude of change seen experimentally. Performance can be greatly enhanced by using multiple cue presentations during recall.

Journal
Neural Computation: Volume 11, Issue 1

StatusPublished
Publication date01/01/1999
PublisherMIT Press
ISSN0899-7667
eISSN1530-888X

People (1)

Professor Bruce Graham

Professor Bruce Graham

Emeritus Professor, Computing Science