Article
Details
Citation
White AT, McCurdy CE, Philp A, Hamilton DL, Johnson CD & Schenk S (2013) Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia, 56 (7), pp. 1629-1637. https://doi.org/10.1007/s00125-013-2912-2
Abstract
Aims/hypothesis: The NAD+-dependent protein deacetylase sirtuin (SIRT)1 is thought to be a key regulator of skeletal muscle metabolism. However, its precise role in the regulation of insulin sensitivity is unclear. Accordingly, we sought to determine the effect of skeletal muscle-specific overexpression of SIRT1 on skeletal muscle insulin sensitivity and whole-body energy metabolism.
Methods: At 10 weeks of age, mice with muscle-specific overexpression of SIRT1 and their wild-type littermates were fed a standard diet with free access to chow or an energy-restricted (60% of standard) diet for 20 days. Energy expenditure and body composition were measured by indirect calorimetry and magnetic resonance imaging, respectively. Skeletal muscle insulin-stimulated glucose uptake was measured ex vivo in soleus and extensor digitorum longus muscles using a 2-deoxyglucose uptake technique with a physiological insulin concentration of 360 pmol/l (60 μU/ml).
Results: Sirt1 mRNA and SIRT1 protein levels were increased by approximately 100- and 150-fold, respectively, in skeletal muscle of mice with SIRT1 overexpression compared with wild-type mice. Despite this large-scale overexpression of SIRT1, body composition, whole-body energy expenditure, substrate oxidation and voluntary activity were comparable between genotypes. Similarly, skeletal muscle basal and insulin-stimulated glucose uptake were unaltered with SIRT1 overexpression. Finally, while 20 days of energy restriction enhanced insulin-stimulated glucose uptake in skeletal muscles of wild-type mice, no additional effect of SIRT1 overexpression was observed.
Conclusions/interpretation: These results demonstrate that upregulation of SIRT1 activity in skeletal muscle does not affect whole-body energy expenditure or enhance skeletal muscle insulin sensitivity in young mice on a standard diet with free access to chow or in young mice on energy-restricted diets.
Keywords
2-Deoxyglucose uptake; Energy restriction; Insulin sensitivity; SIRT1; Skeletal muscle
Journal
Diabetologia: Volume 56, Issue 7
Status | Published |
---|---|
Publication date | 31/07/2013 |
URL | http://hdl.handle.net/1893/16535 |
Publisher | Springer |
ISSN | 0012-186X |
eISSN | 1432-0428 |