Article

Field-portable Mössbauer spectroscopy on Earth, the Moon, Mars, and beyond

Details

Citation

Schröder C, Klingelhoefer G, Morris RV, Bernhardt B, Blumers M, Fleischer I, Rodionov DS, Girones-Lopez J & de Souza Jr PA (2011) Field-portable Mössbauer spectroscopy on Earth, the Moon, Mars, and beyond. Geochemistry: Exploration, Environment, Analysis, 11 (2), pp. 129-143. https://doi.org/10.1144/1467-7873/09-IAGS-018

Abstract
Iron occurs naturally as Fe2+, Fe3+, and, to a lesser extent, as Fe0. Many fundamental (bio)geochemical processes are based on redox cycling between these oxidation states. Mössbauer spectroscopy provides quantitative information about the distribution of Fe among its oxidation states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. Portable, miniaturised Mössbauer spectrometers were developed for NASA’s Mars Exploration Rovers (in operation since 2004) and provide a means for non-destructive, in-situ field investigations. On Mars, these instruments provided evidence for aqueous activity with implications for habitability, were applied in geological mapping of the landing sites, and helped to identify meteorites, for example. On Earth, they were used in field studies of green rust, the identification of air pollution sources, or the study of archaeological artefacts. Their application to in-situ resource utilisation (ISRU) on the Moon has been demonstrated in a recent NASA field test of hardware for oxygen production. A new detector system in an advanced version of these instruments is based on Si Drift Detectors and permits the simultaneous acquisition of X-ray fluorescence spectra to determine elemental compositions.

Keywords
Fe (bio)geochemistry; archaeometry; in-situ resource utilisation (ISRU); nondestructive

Journal
Geochemistry: Exploration, Environment, Analysis: Volume 11, Issue 2

StatusPublished
Publication date31/05/2011
URLhttp://hdl.handle.net/1893/17120
PublisherAssociation of Applied Geochemists/Geological Society London
ISSN1467-7873
eISSN2041-4943