Article
Details
Citation
Betancor M, Sprague M, Usher S, Sayanova O, Campbell P, Napier JA & Tocher DR (2015) A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Scientific Reports, 5, Art. No.: 8104. https://doi.org/10.1038/srep08104
Abstract
For humans a daily intake of up to 500mg omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) is recommended, amounting to an annual requirement of 1.25 million metric tonnes (mt) for a population of 7 billion people. The annual global supply of n-3 LC-PUFA cannot meet this level of requirement and so there is a large gap between supply and demand. The dietary source of n-3 LC-PUFA, fish and seafood, is increasingly provided by aquaculture but using fish oil in feeds to supply n-3 LC-PUFA is unsustainable. Therefore, new sources of n-3 LC-PUFA are required to supply the demand from aquaculture and direct human consumption. One approach is metabolically engineering oilseed crops to synthesize n-3 LC-PUFA in seeds. Transgenic Camelina sativa expressing algal genes was used to produce an oil containing n-3 LC-PUFA to replace fish oil in salmon feeds. The oil had no detrimental effects on fish performance, metabolic responses or the nutritional quality of the fillets of the farmed fish.
Keywords
molecular engineering in plants; fatty acids; nutrition
Journal
Scientific Reports: Volume 5
Status | Published |
---|---|
Funders | Biomar Ltd and Biotechnology and Biological Sciences Research Council |
Publication date | 29/01/2015 |
Publication date online | 29/01/2015 |
Date accepted by journal | 06/01/2015 |
URL | http://hdl.handle.net/1893/21469 |
Publisher | Nature Group |
eISSN | 2045-2322 |
People (2)
Associate Professor, Institute of Aquaculture
Lecturer in Nutrition, Institute of Aquaculture