Article

Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages

Details

Citation

Tesitelova T, Kotilinek M, Jersakova J, Joly F, Kosnar J, Tatarenko I & Selosse M (2015) Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Molecular Ecology, 24 (5), pp. 1122-1134. https://doi.org/10.1111/mec.13088

Abstract
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia-associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus-avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia-associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre-adaptation to mycoheterotrophy in the whole Neottieae.

Keywords
germination; mixotrophy; Neottieae; orchid mycorrhiza; Orchidaceae; Sebacinales

Journal
Molecular Ecology: Volume 24, Issue 5

StatusPublished
Publication date31/03/2015
Publication date online19/02/2015
Date accepted by journal19/01/2015
URLhttp://hdl.handle.net/1893/25939
PublisherWiley-Blackwell
ISSN0962-1083
eISSN1365-294X

People (1)

Dr Francois-Xavier Joly

Dr Francois-Xavier Joly

Lecturer in Soil, Biological and Environmental Sciences