Article

Drivers of soil microbial and detritivore activity across global grasslands

Details

Citation

Siebert J, Sünnemann M, Hautier Y, Risch AC, Bakker JD, Biederman L, Blumenthal DM, Borer ET, Bugalho MN, Broadbent AAD, Caldeira MC, Cleland E, Davies KF, Eskelinen A & Hagenah N (2023) Drivers of soil microbial and detritivore activity across global grasslands. Communications Biology, 6, Art. No.: 1220. https://doi.org/10.1038/s42003-023-05607-2

Abstract
Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.

Notes
Additional authors: Johannes M. H. Knops, Andrew S. MacDougall, Rebecca L. McCulley, Joslin L. Moore, Sally A. Power, Jodi N. Price, Eric W. Seabloom, Rachel Standish, Carly J. Stevens, Stephan Zimmermann, Nico Eisenhauer

Journal
Communications Biology: Volume 6

StatusPublished
FundersDeutsche Forschungsgemeinschaft and National Science Foundation
Publication date01/12/2023
Publication date online01/12/2023
Date accepted by journal17/11/2023
URLhttp://hdl.handle.net/1893/36351
PublisherSpringer Science and Business Media LLC
eISSN2399-3642

People (1)

Dr Arthur Broadbent

Dr Arthur Broadbent

Research Fellow (NERC), Biological and Environmental Sciences

Files (1)