Article

Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs

Details

Citation

Souza AP, Oliveira BA, Andrade ML, Starling MCVM, Pereira AH, Maillard P, Nogueira K, dos Santos JA & Amorim CC (2023) Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs. Science of The Total Environment, 902, Art. No.: 165964. https://doi.org/10.1016/j.scitotenv.2023.165964

Abstract
Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values.

Keywords
Anomaly detection; Satellite images; Water quality; Monitoring

Journal
Science of The Total Environment: Volume 902

StatusPublished
FundersBrazilian National Research Council
Publication date01/12/2023
Publication date online02/08/2023
Date accepted by journal30/07/2023
URLhttp://hdl.handle.net/1893/35586
PublisherElsevier BV
ISSN0048-9697

People (1)

Dr Keiller Nogueira

Dr Keiller Nogueira

Lecturer, Computing Science