Article

Establishment of a fish model to study gas-bubble lesions

Details

Citation

Velázquez-Wallraf A, Fernández A, Caballero MJ, Arregui M, González Díaz Ó, Betancor MB & Bernaldo de Quirós Y (2022) Establishment of a fish model to study gas-bubble lesions. Scientific Reports, 12, Art. No.: 6592. https://doi.org/10.1038/s41598-022-10539-8

Abstract
Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162–163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.

Journal
Scientific Reports: Volume 12

StatusPublished
Publication date31/12/2022
Publication date online21/04/2022
Date accepted by journal01/04/2022
URLhttp://hdl.handle.net/1893/34251
eISSN2045-2322

People (1)

Dr Monica Betancor

Dr Monica Betancor

Associate Professor, Institute of Aquaculture

Files (1)