Article

A Hybrid Persian Sentiment Analysis Framework: Integrating Dependency Grammar Based Rules and Deep Neural Networks

Details

Citation

Dashtipour K, Gogate M, Li J, Jiang F, Kong B & Hussain A (2020) A Hybrid Persian Sentiment Analysis Framework: Integrating Dependency Grammar Based Rules and Deep Neural Networks. Neurocomputing, 380, pp. 1-10. https://doi.org/10.1016/j.neucom.2019.10.009

Abstract
Social media hold valuable, vast and unstructured information on public opinion that can be utilized to improve products and services. The automatic analysis of such data, however, requires a deep understanding of natural language. Current sentiment analysis approaches are mainly based on word co-occurrence frequencies, which are inadequate in most practical cases. In this work, we propose a novel hybrid framework for concept-level sentiment analysis in Persian language, that integrates linguistic rules and deep learning to optimize polarity detection. When a pattern is triggered, the framework allows sentiments to flow from words to concepts based on symbolic dependency relations. When no pattern is triggered, the framework switches to its subsymbolic counterpart and leverages deep neural networks (DNN) to perform the classification. The proposed framework outperforms state-of-the-art approaches (including support vector machine, and logistic regression) and DNN classifiers (long short-term memory, and Convolutional Neural Networks) with a margin of 10–15% and 3–4% respectively, using benchmark Persian product and hotel reviews corpora.

Keywords
Persian Sentiment Analysis; Low-Resource Natural Language Processing; Dependency-based Rules; Deep Learning

Journal
Neurocomputing: Volume 380

StatusPublished
Publication date07/03/2020
Publication date online17/10/2019
Date accepted by journal05/10/2019
URLhttp://hdl.handle.net/1893/30451
ISSN0925-2312

Files (1)